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QUASILINEAR CONFLICT-CONTROLLED PROCESSES WITH NON-FIXED TIME* 

P.V. PROKOPOVICH and A.A. CHIKRII 

We identify a class of conflict-controlled processes /l-3/ for which the 
solving functions of the group pursuit problem /4-7/ are independent of 
the termination time of the game while evader errors cause the process 
to terminate earlier than the guarantee time. Sufficient conditions are 
derived for the solvability of pursuit and evasion problems, and the 
continuity property of the solving functions is studied in detail. The 
sufficient conditions for the pursuit problem to be solvable do not 
include Pontryagin's condition /3, 8/; it is replaced with a weaker 
assumption related to the initial state of the process. The proposed 
procedure enables us to strengthen some known results on the solution of 
group pursuit problems. 

1. The motion of a conflict-controlled object 2 = (21, . ., 2,) in the finite-dimensional 
Euclidean space RY is described by the system of differential equations 

zi' = Aizi + ‘pi (ui, u), zi E R”I, uj E U,, u E V, zi (0) = zio (1.1) 

Here Aj is a given square matrix of order vi, UC and V are non-empty compact subsets in 
the spaces Rpl and R9, respectively, and the function cpi (Ui, v) is continuous in all its 
variables. Here and henceforth, i = 1, 2, . . . . n. 

The terminal set M* consists of the sets M:*, such representable in the form 

Mi* = M,” + Mi (1.2) 

where MP is a linear subspace of the space RYf and M, is a convex compact set in Li - 
the orthogonal complement of M,O’ in R’l. 

We say that the game (1.1) terminates from the initial state 20 = (z,O, . . ., z,O) not later 
than in a time T (2") if measurable functions ni 0) = UI (ZlO, v (1)) E U,, 0 < t < t*. 1* < T (9) 
exist such that zip Mi* for at least one i for any measurable function v(t)~ V, O,< t< 
T (z”), where si (t) is the solution of the system of Eqs.(l.l) corresponding to the pair of 
controls ui (t) u (1) and the initial state zi'. 
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We say that the game (1.1) from the initial state zO~RV\ M* allows evasion of the 
set M* if there exists a measurable function v(t)= V, 0 < t < 00 such that zi (Q @ Mi* 
for all t E LO, m) for all measurable functions 
a programmed control, i.e., 

ui(t)E Vi, 0.s.t~ m. The evader applies 
a control that utilizes only information about the initial state 

20. 

2. Denote by int H,ff,aH,coH, and conW respectively the interior, the closure, 
the boundary, the convex hull, and the conical Hull of the subset H in the space Rk; let 

Kk (4 be a sphere centred at the point XE Rk with radius r>9, i.e.,. 

B,R (2) = {.7/ & R": /f y - z/I <r) (2.1) 

In the space Q(R’) of all non-empty compact subsets of the space R’, we define the 
Hausdorff metric h(A, B) between two sets A, E EC? (R’) by the formula 

12 (A, B) = min {r > 0: A C 17 -+- 3,” (0). B c A + BTL (0)) (2.2) 

In what follows we also consider the space co Q (RR”) that consists of all non-empty 
compact convex subsets in the space R”. 

For the set FE Q(R") we define the support function 

c (F, 49 = n=& (i, 4% 4) E R’( (2.3) 

Let Q~E RK, lj$O1l # 0. The set 

u (F, $0) = 0 E F: 0, YkJ = c (P, &,} (2.4) 

is called the support set to the set P in the direction &,. If the support set u (F* 90) 
consists of a single point, then we say that the set F is strictly convex in the direction 
$,,ER’ 191. We say that the set FEQ (Rx) is strictly convex if it is strictly convex 
in every direction *Of3 R', jj~oII f0. The set FG Q(R”) is called a compact set with a 
smooth boundary if 

U (F, $4 r\ u (F, 9') = @I, v% +'E =,'(O), Q #%' (2.5) 

We will state some auxiliary propositions, 

Lemma 1. Let X f R (R”), Y E 51 (R*), BE S2 (RR), 8: X x Y--f 52 (R’) be an upper semicon- 
tinuous multivalued mapping, f: X-t R’ a continuous function, and 

f (4 3~ B, -z (f (2) -B) 17 A (x, y) # (;, yz~ X, y E Y 

Then the function a: X x Y-t R, defined by the formula 

ry. (I, y) = max {a > 0: --n (f (4 - Bl 0 A (2, Y) f i/i3 (2.6) 
is upper semicontinuous. 

Proof. We will show that the function a. (+. Y) is upper semicontinuous at an arbitrary 
point (z,,, yo) in X x Y. To this end, let 

a,’ = lim sitp 
(X, Il)-(X.* IID) 

a (t. $4‘ (-t, Y) E: X x Y 

Take a sequence of points (s,,y,) = X x Y such that 

Since 
--a 6% YrHf (4 - 8) n A h, Yl.)+= B 

there is a vector b, E 3 such that 

--3. (zr. Y&f @r) - w E A f% or) 

By the compactness of the set B, we isolate from the sequence (6,) a subsequence 
that converges to some point 

(b,,) 
b,isX). Then 

-CC (Q I/,,) (f (Q - bri) E A(z~~, Y,~) (2.8) 

The multivalued mapping A&y) is upper semicontinuous, and passing to the limit as 
rt - co we obtain from (2.8) 

--a,' (f,, - b,) E A, C/o == f (d, A, = A @as I/O)) 

Using the definition of the function a&y), we obtain 

ci*‘ <: W@ (a@ = CC (% Yoi) 
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Thus, the function a (5 Y) is upper semicontinuous at the point (% Yo). 

Lem 2. Let XE Q (R"), YE sa (R% f: x -+Rh be a continuous function, Ii f (4 II f 09 
VXEX, and let the mulitvalued mapping \Ir: X+ Q(R") be defined by the formula 

I (z) = {$ E aBrk (0): (% f (3)) = 0) (2.3) 

Let A: X x y-+coQ(fi') be a continuous multivalued mapping, the set A (I, y) for 
each point (5, Y)E X X Y is strictly convex in every direction +EY(z), and 

- 
-conf(~)nA(s,y)~~,v+EX,yEY 

Then the function Q: X x Y-+R defined by the formula 

a (5, y) = max {a 2 0: --al(z) E A (2, y)) (2.10) 

is continuous. 

Proof. Upper semicontinuity of the function a: X x Y+R follows from Lemma 1. We will 
show that 0; (2. Y) is lower semicontinuous. Assume that this is not so: at some point (x,,yc) 
on the set X x Y the function a (5, Y) is not lower semicontinuous, i.e., there exists a 
sequence ((z?. I/~)), (I~, Y?) E X X Y, that converges to the point (za9 yo) and 

lim a (zt, yr) = a@' < a0 
T-m 

From the definition of the function a&y), we obtain 

-%fo Cm BA,, --a @t, .Vr)f (4 E C&4 (+9 Y,l 

Since the continuous multivalued mapping A (5,~) is convex-valued, the mapping aA: X x 
Y-+Q (R”) is also continuous /lo/. Therefore 

---~lg'& E, +A, 

If the segment G = I--sL'&. -aOfci is on the boundary of the set A,, then there exists a 
vector 9 E aBlh (0) for which G c CI(A,,$) and (fo,$) = 0, which contradicts the condition of 
strict convexity of the set A, in any direction $E~(x~). Thus, each point of the interval 
G which is not one of its ends -aof,,, -%‘fo is an interior point of A,. 

Let p= a,,--~,'. Since the sequence {a(+,r,)} converges to q', for ~==p/3 we can 
identify a natural number N1 such that 

1 c” (ST, y,) - a,’ I < E, Vr 2 N* 
The point p = -113ap’f0 - a:s%fo is in the interior of the set A,. The multivalued mapping 

‘4 (z. Y) is continuous, and so there exists a natural number N% such that for r> % the 
point p =intA &,Y,+. Thus, for r>N,, 

= (k Yt) > "/,@0' + =/,e, 
Finally, for r> max (A',, NPI 

a 6% rrr) - a,' < '/,P* a, - a (.% Yr) d ‘!sP (2.11) 

Adding inequalities (2.11) we obtain a contradiction, 
a, - a,' < *i,p 

The function a: X x Y-R is thus lower semicontinuous. 

Lennraa 3. Let x E Q (R’), Y E 52 (Rq), A: X x Y +coB(Rk) a continuous multivalued 
mapping, f: X-+Rk a continuous function and 

jl f (x) 1) f 0, -con j (2) (1 int A (x7 Y) # 0, 7Ja: E X, y E Y. (2.12) 

Then the function CL: X X Y-t R, defined by formula (2.10), is continuous. 
The proof of Lemma 3 follows the same scheme as Lemma 2. Note only that the interval 

(-%'fa. --aafo) is in the interior of the set A. by the second relationship in (2.12). 

Lem 4. Let. A FZ co 8 (Ra), YE Q (R5), ZER~\(O}-~Z~ (A-gy)#jZI+ V~EY. Then 
the function a: Y+ R defined by the formula 

CC(Y) = max {a> 0: --axE A -g} (2.13) 

is continuous. 

Proof. We will show that the function a(y) is lower semicontinuous at an arbitrary 
point y. of the set Y. Assume that this is not so: there exists a sequence (Ylh Yr E y, 

that converges to !I, such that the corresponding sequence {a (~a)} converges to %', %' <a,. 
As before, we obtain that 

-_ao'z E aA - y,, ---aOr E C2A - y. 

If the interval (-a,'s, --a,+) is in the interior of the set .4 -yov then the rest of 
the analysis follows the same line as in the proof of Lemma 2. We therefore assume that the 
interval G= I--a,'+,--a,zl is on the boundary of the set A -Yo. Put p =‘ (lo - a,'. Since a fur)- 
CLO' as r-m, we may assume that for any r>j, 



51 

II Yr - Yo n < l/PP II + II7 I a (Yr) - a,’ I < ‘I@ (2.14) 

Since Gc8A -Yo, there is a vector q. f. ~IB,~(O) such that G -t Y, = u (A. Wa). Hence we 
obtain that (z,$~)= 0 and c (A, 90) = b%t %I). Since -a(Y,)z+ Y,EA, we have (Yr,So) d (Y0.W. 

We will show that (Y~,~~)~(Y~,~~) for any r>f. Indeed, 

-% (% + %')J. + YO - yr f Y, E A 

Therefore, if (Y~,$~) = (Yo,qo), then Y, -Y, = cx, / a I< %p and therefore 0~ (Y,) > a,’ + ':a~. which 
contradicts (2.14). Thus, for any r>i the point --a (Yl)Z + Yr lies on the line through 
the points --aO's-t-Yor --uos+ y,. Consider the sets 

K = co (-a@'s + Y,, --a,+ f Yo. --a (Y& + Yd 

h’, = (z E Ra: z E Ba* f--‘/2 (a, + %‘)z + Ye), ia. %) < (Y. ‘b)) 

Clearly, KC.4 and there exists 6>0 for which &cK. Starting with some N, the 
elements of the sequence (zI), +=: ---'I,(%+ ~.~')ri-Yr are in the set 4. At the same time, from 
conditions (2.14) we have 

[-(a,' + '/rp)s, --a,.+k Y, n A = 0, r = 1, 2,. . . 

Therefore, the set A does not contain any elements from the sequence (zt}. A contradic- 
tion. The function e (Y) is thus lower continuous on the set Y. 

Remark 1, Already in the space R3 with all other assumptions of Lemma 4 satisfied, 
the function a (Y) defined by the formula (2.13) is not necessarily lower semicontinuous, 
even if Y=A,OezA. 

3. Let us describe the pursuit scheme. Denote by a$ the orthogonal projector from 
R’r on Li. 

Condition 1. For a fixed point z=& . . . . Zn)ERV such that rsiexp (t&) cf nip, for 
t 2 0, we have the relationships 

- 
-con (ni exp (tAi) Zi - Mi) n ni exp ((t - Z) AJ cpi (Vi, u)# g 

for all O<z<t<w, uEV. 

(3.1) 

Fix a point 2 for which Condition 1 is satisfied and introduce the solving functions 

cq (23, t, 7, a) = max {a > 0: --a (ST* exp (t-44) Z+ - n/r,) (7 

I?m e=p ((t - ~)A~)~i(ui, dfi(?l)r O<r<tCoo, VEV 

(3.2) 

CoroZZary . Assume that the point 2 = (21, . . ., 2,) E I?? satisfies Conditionl. Then 
for any T E (0, M) semicon- 
tinuous. 

the function oi (zc, t, 2, u): IO, 2'1 x IO, Tl x V+ R is upper 

Proof. The function (pi: Ui x Y-+R 9 

cpl (Vi, v): v + Q (BV9 
is continuous, and therefore the multivalued mapping 

iS continuous fll!. Since the matrix e~P((t- @A,) 
(i, z)r 

continuously depends 
on the multivalued mapping nr exP((t -T)AJ(P~ (ul, v): [O, Tl x IO, TI x V- sa (rc+q is continuous. 
Lemma 1 proves the corollary. 

Put 

t 
(3.3) 

T (z) = inf {t > 0: h (z, t) < 0) (3.4) 

The infimum in (3.3) is over all possible functions measurable in IO, tl with values in 
the set V. 

Theorem 1. Let Mi = {O}, n&i =&w, the point Z" = (z~",...,z,~)E RV satisfies 
dition 1 and p = T(%@)< 00. 

Con- 

Then the game (1.1) will terminate from the initial state z" not later than in time To. 

proof. From the assumptions of the theorem it follows that the functions 
are independent of t and can be represented in the form 

ai (%P, t, 7, 0) 
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Let u(z), 0 < z < To7 be some measurable function with values in the set V. Since the 
function ai (GO, z, v): [O, F1 x v+ R is upper semicontinuous, the function af (ZfO, z, v (7)) 
is measurable with respect to T in the interval IO, PI. Let 

h(f)= l-mqex~ai(zi.,T,D(T))dI 
II 

Let t, be the first positive root of the equation h(t) = 0. This root exists and 

t, Q To. This follows from the continuity of the function Jz 0) and the inequality 

h (TO) Q 0. 
By Condition 1 and the Filippov-Kasten theorem /12/, for any i there exists a measurable 

function u*(z)E Ui, 0 Q7 < To, which for any fixed z,=[O, To] solves the equation 

-ai (z,O, TO, v (z0)) nizio = “i exP (-TcJi) 'pi (Ui7 v (z0)) (3.5) 

At time z,,, thevalue of the control 4 (%I) is a lexicographic minimum among all the points 
Ui E Ui for which equality (3.5) holds. 

We will show that if the pursuer controls are chosen in this way, then z (t*) E M*. 
Indeed, at time t, there is an index sE {i, . . . . n}, for which 

1-ra,(z,",z,v(X))dr=O 
0 

The matrices n, and A, commute, and therefore by the Cauchy formula we have 

;I,z, (t,) = exp WL) (v,O + ! 
0 

nc, =P(---A,)cp,(u,(% v(~))dz) = 

exp (t,A,) ( xIzsO - nazso t a, (z,‘. t, u (T)) dz) = 0. 
” 

Hence, z, (b) E M.*. 
4. Let us consider in more detail the conflict-controlled process (1.1) in the case 

when A, is the zero square matrix of order vi for any i. The conflict-controlled process 
of the type of simple motion with mixed player controls is described by the system of dif- 

ferential equations 
Zi' = 'pi (U<, lJ), Zi E RY’, uf E Vi, U E V* Zj (0) = Zi" 

Here Ui E 51 (R’l). VE Q (Rq), the function $$(I&, v) is continuous in all the variables. 
The terminal set M* consists of the sets Mi*, each representable in the form (1.2). 

Form the multivalued mappings 

- 
wi (Zi, v) = --con (n& - MJ n n*'pj (Ui, U) 

wi(zi, U) = --con (nizi - MJ n co n,cpi(C,,u),zi~ R”l\ M,*,uE V 

Condition 2. For a fixed point 2, = (z,, . . .( Z,)E R” \M*, we have Wi(Zi, v)# 0 for 
any vE V. 

Condition 3. For a fixed point z = (Zl, . . ., z,JER”\M*, we have vi (Zi, v) # 0 for 
any vE V. 

Fix the points z, f for which Conditions 1 and 2 hold respectively and introduce the 
solving functions 

as (zi, u) = max {a > 0: -a (nizi - Mi) n aqqi (Vi, v) # 0) (4.2) 
Ed (q, v) = max {a > 0: -a (G - Jf,) n co n,cpf (ui, v) # a}, v E V (4.3) 

Consider the function 



53 

Let 

a (2) = hf, nyxaj (zi, u), cZ(?) = inf nlaxd,(t,, V) 
FEY i 

Theorem 2. Assume that the point z" = (z,O, . . . . z,,“)E RV\ M* satisfies Condition 2 
and a">O. Then the game (4.1) will terminate from the initial state 9 not later than 
in time T" with the bound T",< n/a”. 

The proof is based on the ideas used in the proof of Theorem 1. Let us derive an upper 
bound of T”. Since 

1-~ff:f)Sm~xai(zi.,u(7))d7=1-~a(z”)t 
‘t 0 

we have T”,<da” if a">O. 

Theorem 3. Assume that the point z0 = ($0, . * .( z,‘)E R”\ M” satisfies Condition 3, 
& (ZO) = 0, and the infimum in the expression 

inf max di (z,', u) 
EV i 

is attained on some vector u0 E V. Then the game (4.1) from the initial state z" allows 
evasion of the set Mm. 

Proof. Let u (t) E v0 for t > 0. Since d (z') = 0, then $ (z,‘, vO) = 0. This in turn 
implies that 

Hence we obtain 

Note that 

{sx,z~’ + t CO niq< (Vi, ~0)) n Mi = P, F’t > 0 (4.4) 

3tiZi (1) C JCiZ*’ + t CO 9T{Ti (Vi, Vg)r Vt > O 

Therefore, using (4.4), we obtain that YTiZd (t) @ Mi for t > 0. 

Remark 2. If Ml= {O), then Lemmas 2-4 supply a sufficient condition for the infimum 
in the expression 

to be attained. 
In general (game (l.l)), the assumptions niAi = Aini, Mi= (0) limit the solvable class 

of pursuit problems, but the conditions on the pursuer control regions in the proposed scheme 
are in some sense weaker than in standard methods of solving the pursuit problem. 

Let us demonstrate this result with some examples. 

Example 1. We are given the differential game 

zi'= U~-U,Z*E Rk, ui E ui (IjO). u E v, Zi (0) = ZiO 

Here V is a strictly concave and convex compact set with a smoothboundary, I_I,(~,o) = 
IDESClV,O) rJ (V, 

q), S- (2,‘) = (g E al?,’ (0): ($, zp) d 0) and Mk* = (0) 
A necessary condition for the applicability of the known methods of group pursuit /4-l, 

13, 14/ to solve the pursuit problem in this differential game is the condition 

which is not satisfied in this case, because the control region of each pursuer is only part 
of the boundary of the control region of the evader. 

It can be shown that the point P= (zl*. . . ..z.,‘) =Rkn\bf* satisfies Condition 2 and a">0 
if and only if we have the inclusion 
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0 E int co {zl*. ., z,*} 

ExmnpZe 2. The differential game is defined by the system of equations 

z,'=ui-",z~ER~,liEaB,~(0),VEB~~(O),Ii(O)LI~~ 

As in example 1, MI* = (0). 

(4.5) 

From Theorems 2 and 3 we conclude that inclusion (4.5) is a necessary and sufficient 
condition for terminating the game in a finite time. 

5. Let n=l, then the conflict-controlled process (4.1) is defined by the equation 

z' = 'P (u, u), z E R”, u E u, v E V, z (0) = z” (5.1) 

Here U E 51 (R’), VE Q (R*), the function cp (u,u) is continuous in all variables. 

The terminal set M* is representable in the form M* = M"+ M, where M" is a 
linear subspace of the space RV and M is a convex compact set in the orthogonal complement 
of L to M” in the space R”. 

For the point z satisfying Condition 2 with n = 1 defined by formula (4.2) the function 

o (z, u) (the index i may be omitted in this case). Consider the multivalued mappings 

W, (z, V) = -con (nz - M) r no (U, u) 

Wa (z, V) = -con (nz - M) (1 co ncp (U, II), z E RY \ M*, u E V 

Form the following sets: 

Proposition 1. Let the point z" E I%', ncp (U, u): V+ co 52 (Rv),M:= (01 and assume that 
at least one of the following conditions is satisfied: 

1) the set nm(U,u) for each VE V is strictly convex in any direction $,~'y, Y= (9 

E aBrk (0): (*, I&) = 0); 

2) -con ns" n inf ncp (U, u) # 0, Vu E V; 

3) v=2, cp(u,u)=u-u. 
Then the game (5.1) will terminate from the initial state 2' not later than in time 

T” = l/a”, where a” = rrj; a (z”, u). 

Proof. Since ZOE w, the point z0 satisfies Condition 2 and a(aO, v)>O for any UE V. 
If any of the three conditions stated in the body of the proposition is satisfied, the func- 
tion a@',~) is continuous in V (Lemmas 2-4) and therefore a0 > 0. By Theorem 2, the game 
(5.1) will terminate from the initial state 9 not later than in time 

To=k*{t>O:i-:;lf)i ( a 10, u (T)) dr = 0 = min (t > 0: 1 - czot = 0) 
} 

1 0 

Hence To = l/u.“. The proposition is proved. 

Proposition 2. Let the point Z'E R”\w, z”EM*. Then the game (5.1) from initial 
state 2' allows evasion of the set M*. 

Proof. When the conditions of the proposition are satisfied, there is a vector V, E v 
such that 

--con (nr"- M) n con~((U, ua)= e, 

Let u (t) E V, for t>O. Repeating the argument in the proof of Theorem 3, we show that 
for the evader control chosen in this way a(t) for t>O. 

Let us emphasize some advantages of the proposed scheme. Pontryagin's condition for the 
game (5.1) has the form 

K =.cVncp (u, u) f 0 (5.2) 

Define the function 

P (z) = min {t > 0: nz E M - t co K} 
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Theorem 4. Assume that in the game (5.1) z”~,RV\iW’, condition (5.2) is satisfied, 

P (zO) < 00 , and the set K is convex. Then Condition 2 is satisfied for the point zO; cc'>G, 
and T" < p" (p" = p (Z’)). 

Proof. Since P”< 00, at time t = P" we have the inclusion &EM - P”K, which is 

equivalent to the following relationship: 

(M - nzO) n P”K # @ 

From P” > 0 we obtain 

UP” (M - nz”) n ncp (U, u) # 0, vu s v 

i.e., for the point z' Condition 2 is satisfied and a (z", u)> 1/P”, VV E V. Therefore 

a" = inf a (z', v) > i/P” (5.3) 
“fs” 

and so a" > 0. From the inequality in (5.3) we have 

T” = lla” < P” 

Example 3. The conflict-controlled process is defined by the equation 

~'=~-",~~R*,L~EU,UEV,Z(O)=Z* (5.4) 

The control regions are U= { 11 :u = (I+ I+), --1 < I+ g 1, u2 = 2), V = Bls (Oh The terminal set is 
Af* = (0). 

Condition (5.2) does not hold for the given control regions, and therefore Pontryagin's 
first direct method for solving the pursuit problem does not apply. At the same time by Prop- 
osition 1, if z?= W= con{(O,-i)), then the game (5.4) will terminate from the initial state 
2. = (2”. Pa) not later than in time TO= -pa. 

Clearly, w=w. By Proposition 2 we conclude that if ZOE U2\ W, nz’[I#O, then qame 
(5.4) from initial state z0 allows evasion of the set M*. 

Rerrmrk 3. All the theorems and propositions of Sects.4 and 5 can be proved for the game 
(1.1) with A*= a,E, a,=R, al<% SI the identity matrix of order Y,, and M,= (0). 
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