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QUASILINEAR CONFLICT-CONTROLLED PROCESSES WITH NON-FIXED TIME*
P.V. PROKOPOVICH and A.A. CHIKRII

We identify a class of conflict-controlled processes /1-3/ for which the
solving functions of the group pursuit problem /4-7/ are independent of
the termination time of the game while evader errors cause the process
to terminate earlier than the guarantee time. Sufficient conditions are
derived for the solvability of pursuit and evasion problems, and the
continuity property of the solving functions is studied in detail. The
sufficient conditions for the pursuit problem to be solvable do not
include Pontryagin's condition /3, 8/; it 1is replaced with a weaker
assumption related to the initial state of the process. The proposed
procedure enables us to strengthen some known results on the solution of
group pursuit problems.

1. The motion of a conflict-controlled object 2z = (z,...,2,) in the finite-dimensional
Euclidean space RY 1is described by the system of differential equations
' =Ag +¢ @, v,z ER, u s U, vaEV, z; (0) = 30 (1.1)

Here A; is a given square matrix of order w;,, U; and V are non-empty compact subsets in
the spaces R™ and RY respectively, and the function ¢; (4, V) 1is continuous in all its

variables. Here and henceforth, i=1,2,..., n.
The terminal set M* consists of the sets M;*, such representable in the form
M* = M 4 M; (1.2)

where M is a linear subspace of the space R" and M; is a convex compact set in L; -
the orthogonal complement of M,® in RY,

We say that the game (1.1) terminates from the initial state 2° = (z° ..., 2,°) not later
than in a time T (2°) if measurable functions w () =u; % v)eEU, 0 t<t*, * T
exist such that 2z (1*) &= M;* for at least one 7 for any measurable function v () =V, 0 <t <
T ("), where z;(f) is the solution of the system of Egs.(1l.1l) corresponding to the pair of
controls u; (f) v(f) and the initial state z°.
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We say that the game (1.1) from the initial state 2’ & R\ M* allows evasion of the
set M* if there exists a measurable function v{(eEV,0<t <o such that z; (1) && M*
for all t= [0, o) for all measurable functions u; (f) & U, 0< ¢t < oo. The evader applies
a programmed control, i.e., a control that utilizes only information about the initial state
z°,

2, Denote by intH,H,0H,coH, and conH respectively the interior, the closure,
the boundary, the convex hull, and the conical Hull of the subset # in the space R®; let
B, (2) be a sphere centred at the point & R* with radius r >0, i.e.,

BF¥z)={y= R [ly —zif <1} @5
In the space Q(R¥) of all non-empty compact subsets of the space R, we define the
Hausdorff metric h (4, B) between two sets A, B = Q (R") by the formula
h{Ad, By=min{r >0 ACB-+B¥*(0), B 4+ B*©0) 2.2)

In what follows we also consider the space co Q (R*) that consists of all non-empty
compact convex subsets in the space R".
For the set F-=Q(R") we define the support function

e (F, $) = max {f, ), p = R* (2.3)
=8
Let o & R, [l 5 0. The set
U(F, gy = {F = F: (f, %) = ¢ (F, D)} 2.4
is called the support set to the set F in the direction ¥, If the support set U (F, Po)

consists of a single point, then we say that the set F is strictly convex in the direction
Yo R* /9/. We say that the set F e Q(RY)  is strictly convex if it is strictly convex
in every direction Y, RY, ||y,ll% 0. The set F = Q(R*) 1is called a compact set with a
smooth boundary if

UF, 9 NUEY) =0, v, ¢ 0B 0), p = (2.5)
We will state some auxiliary propositions.

Lemma 1. Let X=Q(R"), YE=QR), B=Q(R"), yv: X x Y > Q(R*) bpean upper semicon-
tinuous multivalued mapping, f: X — AB* a continuous function, and

J@&EB, —con(f@) —B)NAm Y+ vreX, yeY
Then the function oa: X XY — R, defined by the formula
afz, y) =max{a =0 —a(f{®) —B) ) 4 (z, y) + 1} (2.6)
is upper semicontinuous.
Proof. We will show that the function «(zy 1is upper semicontinuous at an arbitrary
point (z, %) 1in X x Y. To this end, let

o’ = limsup afz,y), & X XY 2.7
{3 Y)-+(%0 W)

Take a sequence of points (z,y) =X XY such that

Iim & (zp, yr) = g’
Since N
=0 (2r, yo)f (2} — B) N A (2, yr) o= 3
there is a vector &, =B such that
—& {zr, y)f (x) — br) = 4 (27, ¥}

By the compactness of the set B, we isolate from the sequence {5} a subsequence {br )}
that converges to some point b= 8B . Then

—alz, u ) Uz —b e Al u,) (2.8)

The multivalued mapping 4 (=, ¥} is upper semicontinuous, and passing to the limit as
rp—> 00 we obtain from (2.8)

—ag’ (fg — by) € Ag (fo == | (z0), 4o = A (245 Yo))
Using the definition of the function a(z,y), we obtain

ay <ty (@ = % (T o))
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Thus, the function «(z, ¥ 1is upper semicontinuous at the point (&, o).

Lemma 2. Let X=Q(R"), Y= Q(RY, f: X — R* be a continuous function, W@ =0,
Vze= X, and let the mulitvalued mapping ¥: X —» Q(R") be defined by the formula
¥ (z) = { = 8B (O): (¥, f(a)) =0} (2.9

Let A: X X Y —coQ(A") be a continuous multivalued mapping, the set 4 ({z, y) for
each point (x, y) = X X Y 1is strictly convex in every direction ¢ & ¥ (z), and

—conf(@) MA@z y) @ Ve X, ysY
Then the function o X X Y >R defined by the formula

oz, ¥) = max {a > 0: —of (z) = 4 {z, ¥} 2.10)
is continuous.

Proof. Upper semicontinuity of the function a: X XY =R follows from Lemma 1. We will
show that «f{z,y) 1is lower semicontinuous. Assume that this is not so: at some point ({(z, ¥)
on the set X XY the function «f(z,y 1is not lower semicontinuous, i.e., there exists a
sequence {(zr, ¥}, (zr,yr) = X X Y, that converges to the point (z,y) and

lim & (27, yr) = o’ < %
rorom

From the definition of the function a(z y)., we obtain
—tofy € 044, —0 {Zr, yr)f (27} = 04 (21, yy)

Since the continuous multivalued mapping 4 (z,y) is convex-valued, the mapping d4: X X

Y — Q (R") is also continucus /10/. Therefore
—og'f &84,

If the segment &= [—a'sfy, —%f] 1is on the boundary of the set 4, then there exists a
vector Y =dB*{0) for which GC U (4,%) and (f,%) =0, which contradicts the condition of
strict convexity of the set 4, in any direction Y =V (z). Thus, each point of the interval
G which is not one of its ends —ayf,, —%'fs 1% an interior point of 4,

Let p= g, — %' . Since the sequence {a{z,y)} converges to ', for e=p/3 we can
identify a natural number &, such that

IC'(Irvyr)_‘an,l\isa Vr 2> Ny

The point p= —Ysa'fy —*s%fo 1is in the interior of the set 4, The multivalued mapping
A (z, ) is continuous, and so there exists a natural number N, such that for r> N, the
point pe=inta (&, y). Thus, for r>¥,,

& {@ry yr) > Yot + Yatte
Finally, for r> max {N,, N;}
& (Zr, yr) — ot < Vgp, g — & (zr, yr} < Ygp 2.11)
2dding inequalities (2.11) we obtain a contradiction,
y — o < Hgp
The function a: X x ¥ - R is thus lower semicontinuous.

Lemma 3. Let XS QRY, Y& Q(RY), 4: X XY —co Q (R*) a continuous multivalued
mapping, f: X - R* a continuous function and

17 (@0, —conf(2) (int A (z, = &, Vz= X,y =Y. (2.12)

Then the function a: X X Y- R, defined by formula (2.10), is contihuous.
The proof of Lemma 3 follows the same scheme as Lemma 2. Note only that the interval
{—og'fo, —%fy) 18 in the interior of the set 4, by the second relationship in (2.12).

Lemma 4. Let A= coQ(RY), YEQ(RY), ze= RN\ {0)—conz() (4 —p) == J, Vy= Y. Then
the function «: Y — R defined by the formula

a(y) =max{e >0 —ar & 4 — y} {2.13)
is continuous.

Proof. We will show that the function «(y) is lower semicontinuous at an arbitrary
point y, of the set Y. Assume that this is not so: there exists a sequence {vr}, ;r =Y,
that converges to vy, such that the corresponding sequence {o(w)} converges to oy, & < 0.

As before, we obtain that
—y'r & 04 — Yo, —eT = 04 — y,

If the interval (—a’z, —%z) 1is in the interior of the set 4 —y, then the rest of
the analysis follows the same line as in the proof of Lemma 2. We therefore assume that the
interval 6 = [—ay's, —%z] is on the boundary of the set A4 —y,. Put p=oa, —¢’. Since «{y)—
a, as r— oo, we may assume that for any r>1,
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flyr = po I <Yapfzl | & @) —~ o | < Yep (2.14)
Since G 94 — yp» there is a vector 1y, edB?(0) such that G-+ y =U(4,9). Hence we
obtain that (z, %) =0 and c(4,%)= (o, Yo} Since —a(y)z+ y- =4, we have (yrs Bo) < (vos o)

We will show that (v Vo)< (#es%e for any r> 1. Indeed,
i fag+ ale+yo~yr +rs 4
Therefore, if (v, Po) = (vo, %)y then y, —y, = a2, |a] <Yy and therefore a (y) > @) + Y, which
contradicts (2.14). Thus, for any r>1 the point —a(y)z-+ y» lies on the line through
the points —ay'z 4 yp, —%7 + y,. Consider the sets

K = co{—ayz + yo, —%z -+ ¥o —a (n)r + 41}
Ky = {z = R: sz @ Byt (=Y {ag -+ ')z + wo)y (50} < (7, %)}

Clearly, KC A4 and there exists 8>0 for which KX, XK. Starting with some N, the
elements of the sequence ({z}, z = —%; (% + a')x + y» are in the set X, At the same time, from
conditions (2.14) we have

[—(a + Yap)z, —aezl +yr N4 =@, r=1,2,...

Therefore, the set 4 does not contain any elements from the sequence {z). A contradic-
tion. The function «(y) 1is thus lower continucus on the set Y.

Remark 1. Already in the space A® with all other assumptions of Lemma 4 satisfied,
the function «a(y) defined by the formula {2.13) is not necessarily lower semicontinuous,
even if Y=4,0e4.

3. Let us describe the pursuit scheme. Denote by m; the orthogonal projector from
R on L.

Condition 1. For a fixed point z=(5, ..., 2,) © R' such that m, exp ({4)&E M, for
t>> 0, we have the relationships
—con {5 exp (t4:) 2 — M) [ muexp (E — ) 4) @ (Ui, v)== o (3.1)

for all 0Tt o0, v=V.
Fix a point z for which Condition 1 is satisfied and introduce the solving functions

o (2, £, T, ) = max {& > 0: —a (7 exp (144 2 — M) [ 3.2)
Mmexp(( — D A) e (U, 1= O} 0TS I< 0, vET

Corollary. Assume that the point z=(z, ..., 2,) & R’ satisfies Condition 1. Then
for any T &[0, o0) the function a;(z, ¢, 7, v): [0, 7] x [0, T] X V-~ R is upper semicon-
tinuous.

Proof. The function o: U; X V—R'® is continuous, and therefore the multivalued mapping
@ (Ui v V>R  is continuous /11/. Since the matrix exp ((t — 1) continuously depends
on (7, the multivalued mapping m, exp ((t — U4, q; (U, v): 10, 71 X 10, 71 X V> Q (8" is continuous.
Lemma 1 proves the corollary.

Put

¢
Az ty=1— in(f) max Soc; @nt v, v(t))de (3.3)
'L‘t - i ¢

7 (s) = inf {£ = 0: A (3, 1) < 0} (3.4

The infimum in (3.3) is over all possible functions measurable in [0, t] with values in
the set V.

Theorem 1. Let M;= {0}, m4; = A, the point 2° = (2% ..., 2" = R® satisfies Con-
dition 1 and 7° = T (2% <C o0,
Then the game (1.1} will terminate from the initial state 2° not later than in time 7°.

Proof. From the assumptions of the theorem it follows that the functions ; (2% t, T, V)
are independent of ¢ and can be represented in the form

o; (&% T, v) = max {a > 0: —amz’ & mexp (—tdy) o (U, v)}
W EM* O 10, vEV
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Let v (1), 0 <1< T% be some measurable function with values in the set V. Since the
function @; (z® v, v): {0, T°] X V= R is upper semicontinuous, the function a, (2 7, v (7))
is measurable with respect to T in the interval [0, 7°]. Let

t
h(t)=1—max Sai (z" T () de
i 9

Let t, be the first positive root of the equation k() = 0. This root exists and
te < T This follows from the continuity of the function & () and the inequality
r(T% < 0.

By Condition 1 and the Filippov-Kasten theorem /12/, for any 7 there exists a measurable
function u (e U;, 0T << T% which for any fixed 1, = [0, T°] solves the equation

—a; (2% Ty v (To)) 15" = 1y exp (—Tedy) @; (i v (To)) 3.5)
At time T,, thevalue of the control 1y, (1,) is a lexicographic minimum among all the points
u = U for which equality (3.5) holds.

We will show that if the pursuer controls are chosen in this way, then z(i,) & M*.
Indeed, at time I, there is an index s& {1, ..., r}, for which

1y
1— S a, (2,5 % v(1)dt =0

0

The matrices m, and A, commute, and therefore by the Cauchy formula we have

te
5, (1) = exp (e A,) (12" + § 7, exp (—74) 0 (2, (0, (1) ) =
0
te

exp (t*As) (nxzso - nszaos Xy (z‘c’ T, U (T)) d'C) =0.

o

Hence, z, (t,) & M,*.

4. Let us consider in more detail the conflict-controlled process (1.1) in the case
when 4, is the zero square matrix of order wv; for any Z. The conflict-controlled process
of the type of simple motion with mixed player controls is described by the system of dif -

ferential equations
5 =g (w, V) & E RyucsU,veV,z0) =z (4.1)

Here U, = Q(R™), V= Q (RY, the function @: (45, v) 1is continuous in all the variables.
The terminal set M* consists of the sets M;*, each representable in the form (1.2).
Form the multivalued mappings

Wi (z;, v) = —&H(ﬂizi — M) ) g (Us, v)
Wi(ziv) = —con (mz;, — M) [N comgp (Upv), s E RO\ M* v eV

Condition 2. For a fixed point z = (3, ..., Z;) E R* '\ M*, we have W, (s, v)# ¢ for
any v V.

Condition 3. For a fixed point z = (z, ..., 2;) & RY\ M*, we have W;(z, 1) * & for
any ve V.

Fix the points 1z, Z for which Conditions 1 and 2 hold respectively and introduce the
solving functions

oy (zi, v) = max {o > 0: —a (vz; — M) (1 me; (U;, v) = ) 4.2)
@ (z, V) =max{a>0: —a(nz — M) N come (U, v) =J}, veV (4.3)

Consider the function

t
T(2)=int{t>0:1— in(f)mnga,i (2 v (x)) dr < 0}
e i 9
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Let
a(z) = inf maxa,(z;,v), &(Z) = inf max & (z,v)
EY=S1 N 4 eV i
Theorem 2. Assume that the point 2° = (% ..., 3,°) & RV \ M* satisfies Condition 2

and o > 0. Then the game (4.1) will terminate from the initial state 2z’ not later than
in time 7T° with the bound 7° < n/a’.

The proof is based on the ideas used in the proof of Theorem 1. Let us derive an upper
bound of T°. Since

13 i
4 . .
1 — inf max \ &, (z% v () dv <1 — — inf S Zai (2% v (D)fdr <
) iy o) ) &
d 1
1——:—inf S maxa; (z;°, v (1)) dt = 1—Ta(z°)t

1~t(~)0 i

we have T°<(n/a’ if o >0.

Theorem 3. Assume that the point z° = (3,°, ..., 2,°) & R¥\ M* satisfies Condition 3,
@ (z°) = 0, and the infimum in the expression

inf max &; (z;°, v)
v i

is attained on some vector v, V. Then the game {4.1) from the initial state 2z° allows
evasion of the set M*,

Proof. Let wv(f)=v, for t>0. Since &(z) =0, then , (z° vy) =0. This in turn
implies that

—con (;z° — M;) [ co m@; (Us, vp) =
Hence we obtain
{nz° + teome (Ui, vo)) N My= % Vi >0 (4.4)

Note that
wuz; () C iz + teo my; (Us, v), VE>0

Therefore, using (4.4), we obtain that mz ()& M,; for t>0.

Remark 2. 1f M,= {0}, then Lemmas 2-4 supply a sufficient condition for the infimum
in the expression

inf max a; (z°, v)
=

to be attained.

In general (game (1.1)), the assumptions md; = A, M; = {0} limit the solvable class
of pursuit problems, but the conditions on the pursuer control regions in the proposed scheme
are in some sense weaker than in standard methods of solving the pursuit problem.

Let us demonstrate this result with some examples.

Example 1. We are given the differential game
i=u v, S R¥, w,elU,@hvel,z,(0)=z290

Here V is a strictly concave and convex compact set with a smooth boundary , U, (z°) = 8] U (v,
P57,
P), §7 (%) ={$€9B" (0): (P, 2°) <0} and My* = {0}
A necessary condition for the applicability of the known methods of group pursuit /4-7,
13, 14/ to solve the pursuit problem in this differential game is the condition

NWi—v)+I
sV

which is not satisfied in this case, because the control region of each pursuer is only part
of the boundary of the control region of the evader.

It can be shown that the point 2= (5% ... z°) = R\ M* satisfies Condition 2 and «° >0
if and only if we have the inclusion
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0 = int co {z;%, . . ., z,%} (4.5)
Example 2. The differential game is defined by the system of equations

=u—v, e Rk, u; = 0B, 0),ve B¥ (0), z;(0) = 2,0

As in example 1, M* = {0}.
From Theorems 2 and 3 we conclude that inclusion (4.5) is a necessary and sufficient
condition for terminating the game in a finite time.

5. Let n =1, then the conflict-controlled process (4.1) is defined by the equation

=9,z R, ucslU,veV, z(0) =72 (5.1)
Here U e=Q (RY), V& Q(RY, the function ¢ (u,v) ‘is continuous in all variables.
The terminal set M* is representable in the form M* = M° + M, where M° is a

linear subspace of the space RY and M is a convex compact set in the orthogonal complement
of L to M° in the space RV,

For the point 2 satisfying Condition 2 with n =1 defined by formula (4.2) the function
o (z, v) {(the index 7 may be omitted in this case). Consider the multivalued mappings

W, (2, v) = —con (nz — M) [ ng (U, v)
Wo(z,v) = —con(nz — M) (Necomgp (U,v), z&= RW\ M*, vV

Form the following sets:

W={zES R\ M*:W,(z,0)'5= @, Vo =V}
W= RV\ M*:W,(z,v) = (", Vv =V}

Proposition 1. Let the point & W, ne (U,v): V—>coQ (RY), M= {0} and assume that
at least one of the following conditions is satisfied:

1) the set ng (U,v) for each v =V is strictly convex in any direction Y= ¥, ¥ = {§
€ 0B,* (0): (p, nz°) = 0};

2) —con nz® [ inf nep (U, v) = J, Vv = V;

3 v=20mv)=u—0
Then the game (5.1) will terminate from the initial state 2z° not later than in time

T° =1/a’, where o° = min « (z° v).
vEV

Proof. Since = W, the point :* satisfies Condition 2 and a(*,v)>0 for any ve V.
If any of the three conditions stated in the body of the proposition is satisfied, the func-
tion «a(z°,v) is continuous in v (Lemmas 2-4) and therefore «°>0. By Theorem 2, the game
(5.1) will terminate from the initial state z° not later than in time

t
70— min{t>0: 1— inf Sa(z°, u(t))dr:ﬂ}:min{t}O: 1— a9t =0)
>3

Hence T°= 1/a°. The proposition is proved.

Proposition 2. Let the point 2z°& RV\ W, 2°c& M*. Then the game (5.1) from initial

state 2° allows evasion of the set M*.

Proof. Wwhen the conditions of the proposition are satisfied, there is a vector p eV
such that
—con (n2° — M) ) co ng (U, ) = &
Let v(t)=v, for ¢>0. Repeating the argument in the proof of Theorem 3, we show that
for the evader control chosen in this way ()& M* for t>>0.
Let us emphasize some advantages of the proposed scheme. Pontryagin's condition for the
game (5.1) has the form

K = 79 (U,0) # (5.2)

Define the function
P@)y=min{t>0: iz M — tco K}
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Theorem 4. Assume that in the game (5.1) 2°= RY\ M*, condition (5.2) is satisfied,
P () << oo , and the set K is convex. Then Condition 2 is satisfied for the point z°, a° >0,
and 7° < P° (P° = P ().
Proof. Since P°<l oo, at time ¢ = P° we have the inclusion nz° &= M — P°K, which is
equivalent to the following relationship:
(M — nz) (| P°K =
From P° >0 we obtain

1PM—a) Ve (U, ) =, VoV
Condition 2 is satisfied and « (2° v) > 1/P°, Vv = V. Therefore

<

i.e., for the point =z

o’ = inf « (z°, v) = 1/P° (5.3)

=4

L]

and so o >0. From the inequality in (5.3) we have
I =1L P°
Example 3. The conflict-controlled process is defined by the eqguation

i=u—vzeR,ueslU,veV, z(0)=_2* (5.4)

The control regions are U= {u w= (uj, u), =1 < u; <1, u, =2}, V=B, (0. The terminal set is
M* = {0}.

Condition (5.2) does not hold for the given control regions, and therefore Pontryagin's
first direct method for solving the pursuit problem does not apply. At the same time by Prop-
osition 1, if e W= con{{0, —1)}, then the game (5.4) will terminate from the initial state
2* = (2, :°?) not later than in time 7°= —z*.

Clearly, w=W. By Proposition 2 we conclude that if < B2\ W, [°|+ 0, then game
(5.4) from initial state :* allows evasion of the set M*.

Remark 3. All the theorems and propositions of Sects.4 and 5 can be proved for the game
(1.1) with A,=aE, ¢, R, ¢, <0, E; the identity matrix of order wv;, and M, = {0}.
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